If it's not what You are looking for type in the equation solver your own equation and let us solve it.
51x^2-192x+180=0
a = 51; b = -192; c = +180;
Δ = b2-4ac
Δ = -1922-4·51·180
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-192)-12}{2*51}=\frac{180}{102} =1+13/17 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-192)+12}{2*51}=\frac{204}{102} =2 $
| 51x^2-192x+180=- | | x/100=126/37 | | 9x−14=40 | | 3.7=1.6-0.6y | | 2x+2x+7=47 | | 3+4/9b=-2/3b | | .5e=5-10+13 | | 3x=12=7x | | 9x-(7x+6)=3x-15 | | -5.2(x-1.4)=67.6 | | 15x+10=15x | | 1g=3g | | -31=-3y+9-8y | | 30.06=6g+3.84 | | 12x+8=4x+58 | | 79=x1.1 | | n+5/2=2 | | x=3+5+4+3/2x | | 8r=+4=10+2r | | 2=-2(x+1) | | x=5+5+2+2+x | | −8x+8=7x+10 | | 2x+3x+4=34 | | 3(2x-6)=(x+9) | | -21=1/2c=11 | | 3x+3+2x+9=180 | | -3r+-6=-41 | | -35=-10+-5m | | F=6/5(n-16) | | -24=3(x+10) | | −5d+4=12 | | 16=1+t |